
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

1 Instructor: Daniel Llamocca

Solutions - Homework 4
(Due date: April 6th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)
 Complete the following timing diagram (A and P are specified as hexadecimals) of the following Iterative unsigned multiplier.

The circuit includes an FSM (in ASM form) and a datapath circuit.
Register (for P): 𝑠𝑐𝑙𝑟: synchronous clear. Here, if 𝑠𝑐𝑙𝑟 = 𝐸 = 1, the register contents are initialized to 0.

Parallel access shift registers (for A and B): If 𝐸 = 1: 𝑠_𝑙 = 1  Load, 𝑠_𝑙 = 0  Shift

clock

resetn

s

DB 11011001

DA 10111101

B

A

z

state

P

done

L

E

sclrP

EP

S1 S1 S2 S2 S2 S2 S2 S3 S1 S1 S2 S2 S2 S2 S2 S3 S1

0D0000 1A 34 68 D0 A0

10010000 0000 0100 0010 0001 0000 0000

000000 0D 0D 0D 75 75

1101 0110 0011 0001 0000

0B 16 2C 58 B0 60

00 00 0B 0B 37 8F 8F 8F75

0000 0000 0000 0000

A0 A0 60

A

din

s_l

E

0

L

E

8
resetn

B

din

s_l

E

0

L

E

DB

4

z b0

+

P
E

sclr

EP

sclrP

FSM

s

done

sclrP

z

b0

EPE L

Shift-rightShift-left

S1

S2

resetn=0

1

0
s

z

sclrP  1

EP  1

E  1

01

EP  1

1

0
b0

S3

done  1

1
s

0

L, E  1

8

8

4

DA
4

0000

"0000"&DA

4

P

BA

8

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

2 Instructor: Daniel Llamocca

PROBLEM 2 (70 PTS)
 Design the iterative Circular CORDIC FX architecture with 16 iterations. 𝑖 = 0, 1, 2, 3, … 15. 𝑥0, 𝑦0, 𝑧0: initial conditions.

𝑚𝑜𝑑𝑒 = ‘0’  Rotation Mode. 𝑚𝑜𝑑𝑒 = ‘1’  Vectoring Mode. (40 pts)
 Operation: When 𝑠 = 1, 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛, and 𝑚𝑜𝑑𝑒 are captured. Data will then be processed iteratively. When data is ready

(𝑑𝑜𝑛𝑒 = ’1’), output results appear in 𝑥𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡.

 Input/Intermediate/Output FX Format:
 Input values: 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛: [16 14]. Output values: 𝑥𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡: [16 14]
 Intermediate values: 𝑧𝑖: [16 14]. 𝑥𝑖 , 𝑦𝑖: [20 18]. Here, we use 4 extra bits (add four 0’s to the LSB) for extra precision.

 We restrict the inputs 𝑥0 = 𝑥𝑖𝑛, 𝑦0 = 𝑦𝑖𝑛 to [−1,1). Then, CORDIC operations need up to 2 integer bits (determined via

MATLAB simulation). For consistency, we use 2 integer bits for all input/intermediate/output data.
 Angles: They are represented in the format [16 14]. Units: radians.

 Barrel shifters: Use the VHDL code mybarrelshifter.vhd with mode=”ARITHMETIC” (signed data), N=20, SW=4, dir=‘1’.

Control: This circuit controls the iteration index 𝑖, as well as the internal signals:

FSM

Q

counter

0 to 15

E

sclr z

E
i

sc
lr
i

s

4 i

zi

D

E

Q

s_xyz

mode

Z(15)Y(19)

1 0

di

E

CONTROL

resetn=0

1

Ei, sclri  1

s

S2

S2

s_xyz  1, E  1

E  1

0

1

zi Ei  1

Ei, sclri  1

FSM

1

done  1

s

S3

0

0

0 1 1 0

4
0

16

Xin

4
0

Yin

2-i

s_xyz

E

+/-

i

data_X data_Y

X Y

di

next_X next_Y

Xout Yout

0 1

Zin

data_Z

Z

next_Z

Zout

16

Tan-1(2-i)
i

e_i

LUT

di

CONTROL
Y

Z

s mode

done

di

s
_
x
y
z

E i

+/- +/-

E E

16 16 16

2020

16

20 20

2020 20 20

16

20 20

s_xyz

2-i

a b b a a b

i

4

4

16 16

EEE

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

3 Instructor: Daniel Llamocca

SIMULATION (Functional)

 First testbench: Simulate the circuit for the following cases. You can use 𝐴𝑛 = 1.6468. Convert the real numbers to the

signed FX format [16 14]. For each case, verify that 𝑥16, 𝑦16, 𝑧16 reach the proper values. (10 pts)

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 6⁄ .

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 3⁄ .
 Vectoring Mode: 𝑥0 = 𝑦0 = 0.8, 𝑧0 = 0

 Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = 1, 𝑧0 = 0

 Second Testbench: Simulate the circuit reading input values (𝑥0, 𝑦0, 𝑧0) from input text files and writing output values

(𝑥16, 𝑦16, 𝑧16) on an output text file. (20 pts). Your testbench must:

 Read input values (𝑥0, 𝑦0, 𝑧0) from two input text files:

 in_benchR.txt: Data for Rotation Mode testing.

20 data points (𝑥0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.

Data set: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 2⁄ 𝑡𝑜 𝜋 2⁄ . 𝑧0: 20 equally-spaced values between − 𝜋 2⁄ 𝑡𝑜 𝜋 2⁄ .

With this data set in the rotation mode, note that 𝑥16 → −𝑠𝑖𝑛(𝑧0), 𝑦16 → 𝑐𝑜𝑠(𝑧0).

 in_benchV.txt: Data for Vectoring Mode testing.

20 data points (𝑥0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.

Data set: 𝑥0 = 0.0 𝑡𝑜 0.5, 𝑦0 = 1, 𝑧0 = 0. 𝑥0: 20 equally-spaced values between 0.0 𝑡𝑜 0.5.

With this data set in the vectoring mode, note that 𝑥16 → 𝐴𝑛√𝑥0
2 + 𝑦0

2, 𝑧16 → 𝑎𝑡𝑎𝑛(𝑦0 𝑥0⁄).

 Write output results (𝑥16, 𝑦16, 𝑧16) on out_bench.txt. Data format: [16 14], each line per data point written as

hexadecimals: |x16|y16|z16|. The output text file should have 40 data points (20 from the rotation mode and 20 from

the vectoring mode).

 Vivado tips:
 Make sure that the input text files are loaded as simulation sources.
 The output text file should appear in sim/sim_1/behav.

 To verify that the output results are correct, you need to represent data as fixed-point numbers. Use Radix 

Real Settings in the Vivado simulator window.

 Submit (as a .zip file) the generated files: VHDL code, VHDL testbenches, and output text file to Moodle (an assignment

will be created). DO NOT submit the whole Vivado Project.

 For this Problem 2, you can work in teams of up to two (2) students. Only one Moodle submission per
team, make sure to indicate who you worked with in your Homework 4 assignment.

Output text file (out_bench.txt): They were obtained a very precise 𝐴𝑛 value. To verify your values, just make sure

that they approximate the real values of the functions that the CORDIC algorithm approximates to.

3FFFFFFCFFFD

3F1F0A8B0000

3C8814C60001

38471E780000

3281274E0001

2B5A2F130002

22FF3594FFFF

19B23A9C0000

0FB53E0A0003

05463FC7FFFE

FAB93FC70002

F04A3E0AFFFD

E64A3A9B0000

DCFF3594FFFF

D4A52F13FFFE

CD7E274EFFFF

C7B71E750000

C37714C6FFFF

C0DF0A880000

C000FFFAFFFD

6964FFFF6483

696E000062D7

698A00006129

69B800005F75

69F9FFFF5DD1

6A4DFFFF5C2B

6AB200005A7F

6B2A000058DB

6BB40000573B

6C4EFFFF55A1

6CFB0000540F

6DB80000527D

6E86FFFF50F7

6F6300004F6D

7051FFFF4DED

714E00004C7B

725AFFFF4B03

73750000499B

749E0000482F

75D5FFFF46DB

