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1 Instructor: Daniel Llamocca 

Solutions - Homework 4 
(Due date: April 6th @ 5:30 pm) 

Presentation and clarity are very important! Show your procedure! 

 

PROBLEM 1 (15 PTS) 
 Complete the following timing diagram (A and P are specified as hexadecimals) of the following Iterative unsigned multiplier. 

The circuit includes an FSM (in ASM form) and a datapath circuit. 
Register (for P): 𝑠𝑐𝑙𝑟: synchronous clear. Here, if 𝑠𝑐𝑙𝑟 = 𝐸 = 1, the register contents are initialized to 0. 

Parallel access shift registers (for A and B): If 𝐸 = 1: 𝑠_𝑙 = 1  Load, 𝑠_𝑙 = 0  Shift 
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PROBLEM 2 (70 PTS) 
 Design the iterative Circular CORDIC FX architecture with 16 iterations. 𝑖 =  0, 1, 2, 3, …  15. 𝑥0, 𝑦0, 𝑧0: initial conditions. 

𝑚𝑜𝑑𝑒 = ‘0’  Rotation Mode. 𝑚𝑜𝑑𝑒 = ‘1’  Vectoring Mode. (40 pts) 
 Operation: When 𝑠 = 1, 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛, and 𝑚𝑜𝑑𝑒 are captured. Data will then be processed iteratively. When data is ready 

(𝑑𝑜𝑛𝑒 = ’1’), output results appear in 𝑥𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡. 

 Input/Intermediate/Output FX Format: 
 Input values: 𝑥𝑖𝑛, 𝑦𝑖𝑛, 𝑧𝑖𝑛: [16 14]. Output values: 𝑥𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡, 𝑧𝑜𝑢𝑡: [16 14] 
 Intermediate values: 𝑧𝑖: [16 14]. 𝑥𝑖 , 𝑦𝑖: [20 18]. Here, we use 4 extra bits (add four 0’s to the LSB) for extra precision. 

 We restrict the inputs 𝑥0 = 𝑥𝑖𝑛, 𝑦0 = 𝑦𝑖𝑛 to [−1,1). Then, CORDIC operations need up to 2 integer bits (determined via 

MATLAB simulation). For consistency, we use 2 integer bits for all input/intermediate/output data. 
 Angles: They are represented in the format [16 14]. Units: radians. 

 Barrel shifters: Use the VHDL code mybarrelshifter.vhd with mode=”ARITHMETIC” (signed data), N=20, SW=4, dir=‘1’. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Control: This circuit controls the iteration index 𝑖, as well as the internal signals: 
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SIMULATION (Functional) 
 
 First testbench: Simulate the circuit for the following cases. You can use 𝐴𝑛 = 1.6468. Convert the real numbers to the 

signed FX format [16 14]. For each case, verify that 𝑥16, 𝑦16, 𝑧16 reach the proper values. (10 pts) 

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = 𝜋 6⁄ . 

 Rotation Mode: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 3⁄ . 
 Vectoring Mode: 𝑥0 = 𝑦0 = 0.8, 𝑧0 = 0 

 Vectoring Mode: 𝑥0 = 0.5, 𝑦0 = 1, 𝑧0 = 0 

 
 Second Testbench: Simulate the circuit reading input values (𝑥0, 𝑦0, 𝑧0) from input text files and writing output values 

(𝑥16, 𝑦16, 𝑧16) on an output text file. (20 pts). Your testbench must: 

 
 Read input values (𝑥0, 𝑦0, 𝑧0) from two input text files: 

 

 in_benchR.txt: Data for Rotation Mode testing. 

20 data points (𝑥0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.  

Data set: 𝑥0 = 0, 𝑦0 = 1 𝐴𝑛⁄ , 𝑧0 = − 𝜋 2⁄  𝑡𝑜 𝜋 2⁄ . 𝑧0: 20 equally-spaced values between − 𝜋 2⁄  𝑡𝑜 𝜋 2⁄ . 

With this data set in the rotation mode, note that 𝑥16 →  −𝑠𝑖𝑛(𝑧0), 𝑦16 →  𝑐𝑜𝑠(𝑧0). 
 

 in_benchV.txt: Data for Vectoring Mode testing. 

20 data points (𝑥0, 𝑦0, 𝑧0). Data format: [16 14]. Each line per data point written as hexadecimals: |x0|y0|z0|.  

Data set: 𝑥0 = 0.0 𝑡𝑜 0.5, 𝑦0 = 1, 𝑧0 = 0. 𝑥0: 20 equally-spaced values between 0.0 𝑡𝑜 0.5. 

With this data set in the vectoring mode, note that 𝑥16 →  𝐴𝑛√𝑥0
2 + 𝑦0

2, 𝑧16 →  𝑎𝑡𝑎𝑛(𝑦0 𝑥0⁄ ). 

 
 Write output results (𝑥16, 𝑦16, 𝑧16) on out_bench.txt. Data format: [16 14], each line per data point written as 

hexadecimals: |x16|y16|z16|. The output text file should have 40 data points (20 from the rotation mode and 20 from 

the vectoring mode). 
 

 Vivado tips: 
 Make sure that the input text files are loaded as simulation sources. 
 The output text file should appear in sim/sim_1/behav. 

 To verify that the output results are correct, you need to represent data as fixed-point numbers. Use Radix  

Real Settings in the Vivado simulator window. 

 
 Submit (as a .zip file) the generated files: VHDL code, VHDL testbenches, and output text file to Moodle (an assignment 

will be created). DO NOT submit the whole Vivado Project. 
 

 For this Problem 2, you can work in teams of up to two (2) students. Only one Moodle submission per 
team, make sure to indicate who you worked with in your Homework 4 assignment. 

 

 

Output text file (out_bench.txt): They were obtained a very precise 𝐴𝑛 value. To verify your values, just make sure 

that they approximate the real values of the functions that the CORDIC algorithm approximates to. 
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